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Abstract—Network operation and maintenance rely heavily on
network traffic monitoring. Due to the measurement overhead
reduction, lack of measurement infrastructure, and unexpected
transmission error, network traffic monitoring systems suffer
from incomplete observed data and high data sparsity problems.
Recent studies model missing data recovery as a tensor com-
pletion task and show good performance. Although promising,
the current tensor completion models adopted in network traffic
data recovery lack an effective and efficient retraining scheme
to adapt to newly arrived data while retaining historical infor-
mation. To solve the problem, we propose LightNestle, a novel
sequential tensor completion scheme based on meta-learning,
which designs (1) an expressive neural network to transfer spatial
knowledge from previous embeddings to current embeddings;
(2) an attention-based module to transfer temporal patterns
into current embeddings in linear complexity; and (3) meta-
learning-based algorithms to iteratively recover missing data and
update transfer modules to catch up with learned knowledge.
We conduct extensive experiments on two real-world network
traffic datasets to assess our performance. Results show that our
proposed methods achieve both fast retraining and high recovery
accuracy.

Index Terms—network measurement, sequential tensor com-
pletion, meta learning

I. INTRODUCTION

A. Background and Motivation

Network-wide traffic measurement is a prerequisite for
several network operation and maintenance tasks such as
anomaly detection [1]–[3], network troubleshooting [4], and
network congestion control [5]. To record the network traffic,
a traffic matrix is applied to store data volumes between
every Origin-Destination (OD) pair. To mine the temporal
evolution of network traffic, recent studies compose a series of
traffic matrices in chronological order to form a tensor termed
Network Monitoring Tensor (NMT) [6]–[8].

The measurement ways to obtain NMT are twofold. The
former, network tomography, indirectly measures routing in-
formation and link loads to estimate NMT, and unfortunately,
the strong assumption and under-determined linear model
used in network tomography may not have an exact solution.
The latter, direct measurement through OpenTM and NetFlow
at the flow-level, results in more precise measurement than
indirect measurement.

In this paper, we consider the direct measurement to retrieve
NMT. Unfortunately, complete network-wide NMT is almost
impossible due to the following reasons: (1) measuring all
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OD pairs is prohibitively expensive and usually introduces
additional overhead to the network that causes observer effects.
To reduce the cost and observer effect, only partial OD pairs
are measured, (2) network infrastructure may not support
direct measurement. Inferring NMT requires the extraction of
flow-level statistical information that some devices may not
be compatible with, and (3) unpredictable transmission errors
(e.g., unreliable protocol, network congestion, and unreachable
destination) may also lead to incomplete measurement data [9].

As a result, the observed entries in NMT are always a
subset of all entries, indicating that NMT is a sparse tensor.
As application such as network state forecasting, anomaly
detection, and capacity planning requires intact NMT and less
tolerance to incomplete data, this paper focuses on a critical
problem termed network monitoring data recovery, aimed
to estimate the intact NMT data through a few measurement
results organized as a sparse NMT.

B. Prior Arts and Limitations
Sparse representation techniques, such as compress sensing

[10], [11] and matrix completion [12], are powerful tools to
recover missing data from a few observed entries. Subject to
the limited expressiveness of two-dimensional matrix-based
methods, recent studies [7], [8], [13] generalize matrix comple-
tion to a higher dimensional method called tensor completion
for better data recovery.

Despite its effectiveness, the tensor completion scheme is
inefficient and ineffective to handle continuously arrived new
data. To handle this, one should periodically retrain the model
to update the tensor completion results. Current methods to
make the model adapt to newly arrived data are retraining on
all data, retraining on new data, and retraining by fine-tuning.
However, they can not reach a balance between model fidelity,
accuracy, and resource consumption, as discussed below:

• Retraining on all data. Retraining the tensor completion
model to recover missing entries based on observed data,
including historical and newly arrived data. Considering
the ever-increasing data, this method takes linear-scaling
resources to achieve data recovery while preserving the
highest model fidelity.

• Retraining on new data. Only training the model on
newly arrived data is the simplest solution with low
resource consumption. However, the sampling rate in
network monitoring may be very low (e.g., 2%). It is hard
to recover the missing entries without extracting features



from the observed historical entries using merely the new
data accurately.

• Retraining by fine-tuning. Fine-tune reuses the pre-
vious parameters as initialization of the current model
and updates them using only the newly collected data.
Network traffic data usually change slowly, and the traffic
patterns may be very similar. Since the updates are
based only on the most recent data without considering
historical data, the historical knowledge is not preserved,
resulting in forgetting issues [14]. In recovering missing
network traffic data, the forgetting issue indicates long-
term temporal patterns are no longer preserved. Without
explicitly incorporating long-term patterns, the data re-
covery accuracy may be compromised.

C. Our Contributions
To overcome the limitations of current retraining strate-

gies for tensor completion, we propose a novel approach
named LightNestle ( Lightweight Neural Sequential Tensor
Completion). To complete the missing entries from streaming
network traffic data, our scheme split the large-size continu-
ously arrived data into subtensors sequences and trains the
model to recover missing data sequentially. We introduce
meta learning to optimize the training process and apply it
to dedicate designed neural networks to effectively transfer
knowledge from previously trained subtensors. Through this
design, we only need to train on new data while retaining
historical features and achieving fast adaption to new data.
Our contributions are as follows:

• We introduce meta-learning in the tensor completion
model. We partition streaming network traffic data into a
subtensors sequence to capture common knowledge from
previously trained subtensors and allow tensor completion
to quickly adapt to the next subtensor. Thanks to the
excellent characteristics of meta-learning, we achieve 1)
quick training convergence on newly arrived data that
avoids resource-intensive retraining on all data; 2) pre-
serving rich historic information compared to historical
information-lossy retraining by fine-tuning and retraining
on new data.

• We propose an expressive multi-layered perceptron
(MLP)-based transfer module to capture preference evo-
lution for the origin and destination nodes. Compared
with naive MLP which fails to express semantic drift
and long short-term patterns with limited parameters, we
propose to enhance it by explicitly stacking such patterns
as input, and feeding into the two-layer feed-forward
network to extract intra- and inter-interactions of input
features.

• We propose an attention-based transfer module for time
slot embeddings transferring. We highlight the misalign-
ment problem when directly copying time slots embed-
dings for newly arrived data and propose reordering
and reusing strategies to solve this problem. We further
propose to apply an attention mechanism to achieve
adaptive reordering and reusing time slot embeddings for
fast knowledge transfer.

• We conduct experiments on two real-world network traf-
fic datasets to assess our model performance compre-
hensively. Extensive results demonstrate that LightNestle
not only achieves fast adaption on new data but also
significantly improves recovery accuracy.

The remainder of this paper is organized as follows. We
review related literature in Section II. Section III introduces the
problem formulation and the system model design overview.
Section IV presents our detailed design and complete solution.
Section V evaluates our model performance under different
settings. Section VI draws the conclusion.

II. RELATED WORK

Recovering the whole NMT of a network with sparsely
observed data is indispensable for downstream tasks such as
anomaly detection, traffic engineering, and fault management.
Originally, one can purely use spatial or temporal features
[15]–[18] for data recovery. With sparse reconstruction theory
advanced, some matrix completion-based algorithms [12],
[19]–[21] utilize both spatio-temporal features to recover the
TM. However, modelling spatial and temporal features in a
two-dimensional matrix loses information, and the estimation
accuracy is still insufficient.

Recent studies propose to apply the tensor completion to
capture more spatio-temporal features in the traffic measure-
ment data for more accurate recovery, which can be can
be divided into two categories, mathematical models and
neural network models. Recent mathematical models focus on
improving accuracy by more careful data utilization. Reshape-
Align [22] performs completion on an aligned tensor by
reshaping variable sampling rate measurement data. LTC
[6] identifies local strong low-rank subtensors via locality-
sensitive hashing (LSH) to improve accuracy. OrTC [23]
and ETC [24] consider the anomalies and design different
methods to reduce the outlier effect while recovering sparse
tensor. These studies demonstrate the great potential of highly
accurate tensor completion for network traffic data.

With deep learning advanced, recent neural network models
[7], [8], [25]–[27] improve tensor completion by introducing
non-linearity design into interaction or embedding module.
Among them, only [7] and [8] are designed for network
traffic tensor completion. For the interaction function, CoSTCo
[27] places two convolution layers to capture features from
stacked embeddings. NTC [7] and NTM [26] fully exploit
interactions inside embeddings by constructing outer-product.
To embedding enhancement, NTF [25] and LTP [8] propose
temporal embedding refinement techniques based on Recurrent
Neural Network (RNN). All these methods achieve better
recovery accuracy compared to the linear model.

However, both mathematical and neural network algorithms
mentioned above are only focused on improving recovery
accuracy rather than efficiently retraining to adapt to newly
arrived data.

Meta-learning aims to help models quickly adapt to new
data with the help of previously learned tasks. One weakly
related field is the recommender system. Recent studies [28]



[29] [30] show fast adaption and cold-start alleviation po-
tential via meta-learning. SML [28] is proposed to avoid
costly matrix completion retraining and apply meta-learning
to update model parameters for next stage recommendation
quickly. IGC [29] and IGCN [30] further apply meta-learning
on graph-based recommender systems. These methods either
ignore transferring knowledge in the time domain [28], [30],
or target incremental graph convolution updates [29]. They are
incompatible with tensor completion. Therefore, a novel meta-
learning design for recovering network traffic tensor should be
derived.

To the best of our knowledge, this is the first work to
combine meta-learning with tensor completion algorithms to
achieve fast retraining. We see the opportunity to recover a
tensor sequentially while using meta-learning to accelerate
model training and improve accuracy. Moreover, none of
these neural tensor completion methods considers the efficient
update when new data arrives. Therefore, we propose our
LightNestle to address these issues.

III. PROBLEM FORMULATION

A. System Model and Problem Definition

Network traffic data is organized in a three-dimensional
array called tensor, with its rows being origin nodes, columns
being destination nodes, and depth being time slices. Due to
the packet loss and overhead reduction, the data tensor X is
sparse. We use a set Ω = {(i, j, k)|Xijk ̸= 0} to indicate the
position of observed entries.

As recovering missing entries from sparsely observed data
is critical for downstream network operation and management
tasks, we focus on solving the data completion tasks. Based
on CP decomposition like [6], let A,B,C be factor matrices,
the first step of data recovery is to solve:

argmin
A,B,C

∥X • Ω− JA,B,CK • Ω∥2F , (1)

where • denotes element-wise product, and the recovered entry
indexed by (i, j, k) can be computed through:

x̂ijk = ai • bj • ck =
R∑

r=1

airbjrckr, (2)

where X̂ denotes the estimated traffic data tensor. ai, bj ,
and ck denote the i, j, k-th row of factor matrices A,B,C,
respectively.

In real-world network traffic monitoring systems, the
streaming monitoring data is coming continuously. For fast
data recovery, instead of modelling all data into a single tensor,
we split the data into t stages in a non-overlapping manner
as X = {X(1),X(2), ...,X(t)}. Each subtensor has the same
number of time slots. Let X(t) be the newly arrived data. The
retraining on all data at stage t can be represented as:

{X (k)|0 ≤ k ≤ t} train−→ [A,B,C]
estimate−→ X̂ . (3)

However, directly training on such a large tensor requires many
computation resources and a relatively longer training time.
We propose to train it in a sequential manner recursively:
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Fig. 1. The framework of the proposed LightNestle method.

X (t−1) train−−→ [A,B,C]
estimate−−−−→ X̂ (t−1)

↓ update (4)

X (t) train−−→ [A,B,C]
estimate−−−−→ X̂ (t).

Both retraining on new data and retraining by fine-tuning
can be instances of this training scheme. Retraining on new
data abandons the update process while retraining by fine-
tuning implements the update process by directly copying the
parameters. None of them can solve the dilemma of fast model
updates and capturing rich historical information.

The major challenges in sequential training are two folds.
First, we fine-tune the parameters in the last stage, the model
may meet the forgetting issue and be incapable to incorporate
historical patterns. Second, if we do not use the parameters
from the last stage and reinitialize the parameters, we lost
rich historical information encoded in old parameters while
suffering from low convergence speed. To tackle with above
challenges, we propose to introduce meta-learning into pa-
rameter updates. Meta-learning is naturally suitable for the
parameter update process: 1) meta-learning enables incorporat-
ing historical information since meta-learning modules capture
task-invariant patterns (i.e., different subtensors can be viewed
as different tasks), and 2) meta-learning learn better parameter
initialization to facilitate fast model adaption.

B. Solution Overview

We propose LightNestle, a meta-learning enhanced tensor
completion model, with its architecture shown in Figure 1.
To incorporating historical patterns to achieve fast retraining,
the core idea behind is to transfer learned historical patterns
(encoded in previous embeddings) via a neural network and
combine it with current patterns (encoded in new stage em-
beddings) to generate ultimate embeddings. The LightNestle
takes the following three steps to recover the missing data in
a new stage:

• Training Embeddings. The new stage embeddings en-
code the information of stage t tensor. In this step, we
aim to optimize them quickly with the help of transfer
modules. First, we initialize the new stage embeddings
the same as the previous stage like retraining by fine-
tuning do. Then, instead of directly training on ultimate



embedding like retraining on new data and retraining by
fine-tuning, we feed new stage embeddings and previous
embeddings into transfer modules to predict the ultimate
embeddings.

• Training Transfer Modules. The transfer modules con-
tain the historical patterns learned from previous sub-
tensors and transfer them from previous subtensors to
current tensor. In this step, after training the new stage
embeddings, we aim to update the knowledge preserved
in transfer modules. We continue to train ultimate em-
beddings but treat new stage embeddings as constants
and update weights in transfer modules. We will detail
the design of transfer modules in subsection IV-B and
optimize new stage embeddings.

• Estimation Process. After new stage embeddings and
transfer modules get updated, we use embeddings in the
previous stage and the new stage embeddings to compute
ultimate embeddings via transfer modules. Given the
index of unobserved entries, the prediction values can
be estimated.

In LightNestle, thanks to the transfer module design, we
have the following merits. (1) Compared to ‘retraining on all
data”, we avoid costly retraining when incorporating historical
information to recover newly arrived data while achieving high
recovery accuracy. (2) Compared to “retraining on new data”,
we successfully exploit historical information that “retrain-
ing on new data” ignores. The training cost of our scheme
remains almost the same, since we only incorporate new
data rather than full data, which means it is lightweight
and fast. (3) Compared to “retraining by fine-tuning”, we
explicitly preserves historical information and achieve better
knowledge transferring from history to current. In the next
section, we dive deep into our model design and present our
novel sequential training algorithm.

IV. DESIGN DETAILS OF LIGHTNESTLE

A. Embedding Module

To represent each dimension of a three-way network traffic
tensor X ∈ RI×J×K in the representation learning, following
CP decomposition, let R denote the embedding dimension,
we set up three randomly initialized factor matrices (a.k.a
embedding matrices) A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R for
origins, destinations, and time slots, respectively. Given the
indices (i, j, k) as input, we can obtain their corresponding
factor vectors ai, bj , and ck from embedding matrices where
ai is the i-th row of A, bj is the j-th row of B, and ck is
the k-th row of C.

B. Transfer Module

Transfer modules play an important role in distilling learned
historical patterns from previous embeddings for better ulti-
mate embedding generation. To transfer the knowledge en-
code in three embedding matrices for a three-way network
traffic tensor, we design two transfer modules. There are
two different embeddings transfer categories. The origins and
destination embeddings are the first categories. The same

origin/destination ID indicates the same origin/origination
node no matter how time changes. The time slot embed-
ding transferring belongs to the second category. Due to
the temporal shifting, the same time slot ID usually does
not refer to the same time interval. To deal with these two
kinds of embeddings knowledge transfer, we propose an MLP-
based transfer module for origins and destinations embeddings
transfer and an attention-based transfer module for temporal
embedding transfer. Next, we detail the design of these two
transfer modules.

MLP-based Transfer Module. Different network traffic
patterns can be found in different stages. Current retraining
methods handle these patterns differently. Retraining on all
data equally treats historical data while retraining on new
data fully ignores the historical data. Retraining by fine-tuning
implicitly weighs more on recent data. However, they are
not sufficient to model dynamically evolved traffic patterns
because they do not emphasize the changes between previous
weights and current weights wisely.
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Fig. 2. The architecture of MLP-based transfer modules.

To solve this, we can directly apply an MLP to predict
the ultimate embeddings as w(t) = MLP(w(t−1), ŵ(t))1.
Although MLPs are general function approximators [31],
they have limited ability to capture important features for
knowledge transfer when the network is not wide and deep
enough. For example, feature importance evolution (expressed
by wdot = ŵ(t) ⊙ w(t−1)) and preference drifting (ŵ(t) −
w(t−1)), are fundamental but difficult to learn simultaneously
and automatically with naive MLP [32]. To address this
problem, we compute and stack these features explicitly and
introduce our efficient MLP-based transfer module design for
transferring origins and destination embeddings, as shown in
Figure 2. Concretely, we first stack w(t−1), ŵ(t), and their
subtraction and dot-product as:

H0 =


w(t−1)

ŵ(t)

wdot

wsub

 . (5)

Next, we learn about interactions inside hidden factors:

H(1) = H(0) + ReLU(WhH
(0) + bh), (6)

where ReLU(x) = max(0, x), Wh and bh are trainable pa-
rameters. After capturing internal interaction, we then extract

1Without loss of generality, we treat w as row vectors, which can be rows
of A and B



the interactions among features in the same dimension. Let
H(2) = Transpose(H(1)) , we formulate this process as:

H(3) = H(2) + ReLU(WvH
(2) + bv), (7)

where Wv and bv are also trainable parameters. Finally, the
predicted parameters are computed as:

W(t) = MeanPooling(H(3)). (8)

Through this design, we ease the training difficulty by
explicitly modeling the preference drifting and feature impor-
tance evolution. Notably, our MLP-based transfer module only
transfers knowledge for the same origins/destinations instead
of transferring across origins/destinations. Thus, the time and
space complexity of this module is linear.

Attention-based Transfer Module. Learning to transfer
knowledge from previous time slots embeddings is different
from transferring origins and destinations embeddings. The
major difficulty lies in the temporal misalignment problem,
which is harmful as it may require more gradient steps to
adapt, resulting in a longer adaption time. To understand the
temporal misalignment problem and present our solution, we
present a graphical illustration in Figure 3. The temporal
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Fig. 3. Embedding reordering and repeating for temporal embedding transfer.

misalignment problem reflected in the peak and valley values
in the two stages may deviate. As illustrated by red lines in
stage t− 1 and stage t, directly copying previous embeddings
leads to identical temporal trends. It may largely deviate from
the real trends (marked by blue lines). Therefore, a smarter
embedding transferring strategy should be derived to achieve
fast adaptation.

Fortunately, the network traffic has periodicity and stability,
which inspires us to propose a strategy named “reorder and
repeat”. The basic rule is to copy the embedding from stage
t− 1 and place it to stage t if the features are the best match.
As shown in Figure 3, the blue boxes illustrate the reorder
strategy. We can copy embeddings t0 and t1 and move them
from the head of the stage t − 1 to the tail of the stage t
as the temporal patterns are matched. The yellow boxes show
the ”repeat” strategy. The embedding t6 is repeated twice and
placed in two slots since the low peak period is twice as long
as the previous stage. Noted that, the repeat strategy does not
necessarily require the destination time slots to be neighboring.
Obviously, with the proposed strategy, we can approximate
the real trends in the current stage through embeddings in the
previous stage.

The “reorder and repeat” can be expressed by a column
transformation matrix with only zeros and ones. However, the

binarized matrix is hard to optimize by back-propagation. In
addition, the matrix should be generated smartly by incorporat-
ing previous embeddings and current new stage embeddings.
To overcome these issues, we use a similarity score matrix
to approximate it. Such approximation enables the attention
mechanism to be exploited. Following the attention mecha-
nism, we measure the similarity scores between queries Q
and keys K by matrix multiply and then use such scores to
compute the weighted sum of values V:

C(t) = Softmax(QKT )V, (9)

where Q = Ĉ(t)WQ, K = C(t−1)WK , and V = C(t−1)WV

are transformed by trainable weights WQ, WK , and WV .
We interpret it as using current embeddings to match previous
embeddings and predict the ultimate embeddings as a weighted
sum of previous embeddings. However, the computation of
QKT is expensive since the time complexity is quadratic w.r.t
to the number of time slots. To avoid computing and storing
the costly similarity score matrix, we follow [33] to achieve
reordering and reusing in linear complexity:

C(t) = σ (Q)⊙
∑T

t=1(exp (Kt)⊙Vt)∑T
t=1 exp (Kt)

, (10)

where σ is the sigmoid activation function. T denotes the
number of time slot embeddings to be transferred and ⊙ is an
element-wise product. The core idea behind this is to avoid the
costly computation of matching queries and keys first but to
compute the interaction of keys and values. With interactions
of keys and values

∑T
t=1(exp (Kt) ⊙ Vt)/

∑T
t=1 exp (Kt)

computed, we have an T × d matrix which share the same
shape with σ (Q). Finally, using element-wise product, we
maintain the global interaction between queries and values as
the attention mechanism does.
C. Interaction Module

In our sequential tensor completion scheme, we use the dot-
product-based interaction function, formulated as:

x̂ijk = σ

(
R∑

r=1

airbjrckr

)
, (11)

where σ(x) = 1/(1+exp(−x)) is a non-linear activation func-
tion, enabling the model to capture non-linearity interaction
patterns. We adopt the dot-product-based interaction function
for the following reasons. First, it is non-trivial to design
an extra parameter transfer module for neural network-based
interaction functions as it may contain more than one weight
matrix/tensor. Second, using the parameter-free interaction
function forces the transfer module to focus on distilling
knowledge on embeddings without interfering with interaction
functions. Our experiment results demonstrate that the dot-
product-based interaction function is still effective in high-
accuracy data recovery.

D. Model Training
With all modules introduced, we now consider how to train

our model to complete the entire tensor. Algorithm 1 shows
the sequential completion process. Specifically, the tensor
completion process in a stage has four main steps:



Algorithm 1 Neural Sequential Tensor Completion
Input: Sparse Tensor X , Stage Number T
Output: Estimated Dense Tensor X̂
1: Split tensor X into T stages.
2: Initialize Model Parameters
3: X̂ ← ∅
4: for t=1 to T do
5: Get current stage tensor X (t)

6: while not stop condition do
7: Learn New Stage Embeddings via Equation 12.
8: while not stop condition do
9: Update Transfer Module via Equation 13.

10: Estimate stage tensor X̂ (t).
11: Append X̂ (t) to X̂ .
12: Prepare parameters for next stage.
13: return X̂

Step1: Learn New Stage Embeddings. The new stage em-
beddings Ŵ(t) can not randomly initialized. If we random
initialize Ŵ(t), the W(t−1),Ŵ(t), and W(t) may not in the
same space (i.e. mean values and variances may be different).
It may lead to difficulty in optimization and even unsuc-
cessfully learning. In addition, random initialization fails to
incorporate historical knowledge. To address these problems,
our solution has two measures. First, we let Ŵ(t) = W(t−1)

as initialization to ensure all inputs share the same space.
Second, we optimize Ŵ(t) with sparse tensor X (t) through
transfer modules, which means the back-propagation gradients
are calculated with the help of the parameters in transfer
module. Let fΘ denote the entire transfer modules without
loss of generality. We minimize tensor completion loss Lc as:

Lc(Ŵ
(t)|X (t)) = L(fΘ(W

(t−1),Ŵ(t))|X (t)) + λ1∥Ŵ(t)∥22,
(12)

where L is the objective function (e.g., mean square loss,
mean absolute loss), λ1 is a hyper-parameters to control model
complexity. To prevent the knowledge in transfer modules
distorted during the tensor completion stage, we freeze Θ as
constant and only update Ŵ(t).
Step2: Update Transfer Module. The transfer module pa-
rameters Θ are shared in different stages, they contain stage-
invariant knowledge of recovering missing data. To prevent
modification of well-trained tensor parameter Ŵ(t+1) and to
update transfer modules only, similar to the previous step, we
fix Ŵ(t+1) and minimize transfer loss Lt by tensor completion
task:
Lt(Θ|X (t)) = L(fΘ(W

(t−1),Ŵ(t))|X (t)) + λ2∥Θ∥22, (13)

where λ2 is regularization hyper-parameters to alleviate over-
fitting. This process is based on meta-learning since our final
parameter W(t) for tensor recovery is predicted by neural
networks. Noted that, it is possible to compute the high-
order gradients to further optimize the parameter prediction.
However, due to the high computation costs, we conduct the
first-order optimization as [34] do.
Step3: Estimation Process. After two steps of model train-
ing, we compute the three ultimate embedding matrices for
recovering missing data:

[A,B,C] = W(t) = fΘ(W
(t−1),Ŵ(t)). (14)

Then, we apply interaction modules with three matrices to
recover the tensor via Equation 11.
Step4: Prepare Parameters for Next Stage. Before we move
to the next stage (Stage=t), we set Ŵ(t) = W(t−1) and
store the W(t−1) as constant which will be used as “previous
weight” in the next stage.

E. Complete Solution

The execution process of LightNestle can be described as
follow. In the training process, we store the last stage embed-
dings as constant and reuse them as new stage embeddings.
Next, we train new stage embeddings to capture the features
from the current stage under parameter-fixed transfer modules.
The training process is aided by the knowledge contained
in transfer modules, and thus, achieves fast convergence.
Then, to update the transfer modules, we freeze new stage
embeddings and update the transfer module by optimizing
tensor completion. In the estimation process, we use the output
of transfer modules as ultimate embeddings and recover the
missing data. We repeatedly run the training process and
estimation process when the retraining condition is triggered.

V. EXPERIMENTS

A. Experimental Settings

Datasets. To evaluate the performance of our proposed
LightNestle model, we use two widely used public network
monitoring datasets:

• Abilene [35]: it collects network traffic monitoring data
from the U.S. Internet Network that consists of 12 nodes
every 5 minutes for 168 days. We select the first 48000
time slices in our experiments.

• GÉANT [36]: it records network traffic monitoring data
for 23 pan-European research backbone network nodes.
The measurement collects data every 15 minutes for
consecutive 112 days. We select the first 10000 time slots
in our experiments.

Baselines. We compare our model with four types of meth-
ods, including four mathematical tensor completion models,
four state-of-the-art neural network-based tensor completion
methods, and two training schemes:

• Mathematical Model. We include HaLRTC [37], FaL-
RTC [37], TNCP [38], and Tucker-ALS in our perfor-
mance evaluation. All of them are usual methods in
the low-rank tensor completion area. Due to the out-of-
memory error, we do not report Tucker-ALS results.

• Neural Network-based Model. NTF [25], CoSTCo [27],
NTC [7], and NTM [26] are recent state-of-the-art neural
network-based tensor completion algorithms. NTF and
CoSTCo adopt multi-layered perceptron and convolution
neural networks as interaction functions, respectively.
NTC and NTM design interaction functions based on
outer-product.

• Training Schemes. We compare the LightNestle updat-
ing scheme with retraining on new data and ”retraining by



fine-tuning”. For ”retraining on new data”, we randomly
initialize the parameters. For ”retraining by fine-tuning”,
the initial parameters are copied from the previous stage.

• Variants of LightNestle. We introduce a novel attention-
based transfer module to effectively transfer the temporal
embedding. We create a variant that replaces attention-
based transfer with an MLP-based transfer module to
validate its effectiveness.

Metrics. Let xijk and x̂ijk denote the ground-truth value
and estimated value, Ω̄ denotes the indices of unobserved
entries. We apply two commonly used metrics to assess our
recovery performance on the unobserved entries:

• Normalized Root Mean Square Error. NRMSE takes
the form:

NRMSE =

√∑
(i,j,k)∈Ω̄(xijk − x̂ijk)2∑

(i,j,k)∈Ω̄ x2
ijk

(15)

• Normalized Mean Absolute Error. NMAE is calculated
by:

NMAE =

∑
(i,j,k)∈Ω̄ |xijk − x̂ijk|∑

(i,j,k)∈Ω̄ |xijk|
(16)

For both metrics, NMAE and NRMSE, smaller values
indicate better recovery performance.

B. Implementation Details

LightNestle2 is implemented in PyTorch and performance
evaluation on a laptop composed of 16GB memory and
2.2GHz Intel Core CPU running MacOS 12.4. The maximum
epochs are 30 (20 epochs for minimizing Equation 12, 10
epochs for minimizing Equation 13). The early stopping
is incorporated, i.e., the training loss stops decreasing. The
batch size is set to 256. We apply a grid search strategy to
determine the best hyper-parameters, including learning rate,
weight decay, and optimizer. According to grid search results,
we set the learning rate to 0.01 when “learning new stage
embeddings” while 0.001 when “update transfer module”. The
best weight decay is 1e-5. We optimize our model via Adam
optimizer. The feature dimension is set to 30 and 20 for
Abilene and GÉANT, respectively. The stage size indicates
how many time slots are included in tensor completion in a
time. We set it to 400 for Abilene and 200 for GÉANT. To ease
model training, we clip outliers larger than the 99% percentile
to the 99% percentile, then normalize the data by dividing the
max value.

C. Performance Comparison with Baselines

Compare LightNestle with Mathematical Model. Fig-
ure 4 shows the experimental results of our LightNestle with
four mathematical low-rank tensor completion algorithms. We
conduct comprehensive experiments to evaluate our model
with sampling ratios varying from 2% to 10%. Our proposed
model, LightNestle, outperforms the conventional low-rank
tensor completion model in all cases with a non-trivial margin,
significantly reducing NMAE and NRMSE, demonstrating

2https://github.com/MerrillLi/LightNestle

the superiority of neural network-based tensor completion
algorithms. This indicates that the low-rank models, trained
with alternative least square or nuclear norm minimization,
are insufficient to capture the complex spatial and temporal
relationship and thus limit the performance.

The sampling ratios are 2% to 10% in experiment settings.
They are low sampling ratios. LightNestle is still effective
when the sampling ratio is only 2%, achieving NMAE=0.317
and NRMSE=0.341 on the Abilene dataset. Under the same
sample ratio, the best conventional models only achieve
NMAE=0.959 and NRMSE=0.834, which are 2.0x and 1.4x
better. Similar results can be found in the GÉANT dataset. This
proves that LightNestle is very effective in learning complex
and non-linear spatial-temporal patterns under a low sampling
ratio.

Comparing LightNestle with Neural Model. We present
comprehensive experimental results of four state-of-the-art
tensor completion models (NTF, CoSTCo, NTC, and NTM)
and our proposed model. All baselines are trained on the entire
tensor directly while ours is trained sequentially. Compared
with all baselines, the proposed LightNestle achieve the best
recovery performance on all datasets. Specifically, LightNestle
improves NMAE over the best of baselines by 46.06% on Abi-
lene and 113.62% on GÉANT, improves NRMSE by 48.39%
and 110.55% on GÉANT, with a sampling ratio low at 2%.
NTF, which refines the time slot embeddings with LSTM and
applies MLP as an interaction function, has relatively better
recovery performance among other baselines. CoSTCo uses
2D-convolution neural networks to capture interactions among
embedding vectors without explicitly modeling the temporal
dynamics. CoSTCo has relatively poor performance, indicating
the importance of temporal pattern learning compared to
NTF. NTC and NTM are two representative out-product-based
tensor completion algorithms. NTC applies 3D convolutions
to capture interactions while NTM linearly transforms the
outer product tensor for each mode before feeding into MLP
to compute prediction. However, NTC outperforms NTM
vastly. This may be because NTC is designed for network
monitoring data recovery, while NTM is designed for item
recommendation. Perhaps, the linear transformation of outer-
product mode by mode is not applicable to network traffic
data. Both NTM and NTC are not well-performed when the
sampling ratio is low. We achieve surprisingly good perfor-
mance due to the following reasons. First, our model implicitly
incorporates non-linearity feature extraction through transfer
modules. Second, the transfer module learns well to initialize
the embeddings and include knowledge from previous data. It
is similar to the fact that pre-training can improve the model
performance.

Table III shows training time compared with four neural
tensor completion algorithms. Noted that our LightNestle is
evaluated on the CPU, and baselines are assessed on the
GPU server for acceleration. We observe that our proposed
LightNestle has the fastest training time compared with other
models, even though we only use a CPU. The training time re-
duction is mainly brought by the meta-learning-based transfer
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Fig. 4. Comparison between LightNestle and mathematical low-rank tensor completion algorithms.

TABLE I
RECOVERY PERFORMANCE OF NEURAL NETWORK BASED TENSOR COMPLETION APPROACHES

Models NMAE on Abilene NRMSE on Abilene
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

NTF 0.463 0.407 0.378 0.362 0.348 0.506 0.443 0.414 0.398 0.381
CoSTCo 0.590 0.560 0.542 0.513 0.480 0.640 0.612 0.595 0.567 0.523

NTC 0.564 0.545 0.510 0.468 0.449 0.609 0.592 0.555 0.509 0.485
NTM 1.123 0.987 0.673 0.649 0.475 1.014 0.922 0.728 0.702 0.535

LightNestle 0.317 0.298 0.289 0.286 0.277 0.341 0.328 0.319 0.316 0.305
%Improve. 46.06% 36.58% 30.80% 26.57% 25.63% 48.39% 35.06% 29.78% 25.95% 24.92%

Models NMAE on GÉANT NRMSE on GÉANT
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

NTF 0.910 0.719 0.516 0.464 0.442 0.866 0.704 0.506 0.448 0.420
CoSTCo 0.922 0.885 0.856 0.837 0.772 0.875 0.863 0.854 0.825 0.783

NTC 0.910 0.915 0.873 0.785 0.754 0.838 0.834 0.813 0.780 0.749
NTM 1.526 1.488 1.351 1.266 1.286 1.244 1.224 1.149 1.137 1.159

LightNestle 0.426 0.389 0.371 0.365 0.353 0.398 0.355 0.344 0.339 0.328
%Improve. 113.62% 84.83% 39.08% 27.12% 25.21% 110.55% 98.31% 47.09% 32.15% 28.05%

TABLE II
COMPARE RESULTS OF TRAINING TIME (SECOND [S]).

Dataset/Model NTF CoSTCo NTC NTM LightNestle
Abilene 2921s 793s 1025s 1172s 564s
GEANT 2152s 559s 730s 842s 248s

modules. With better parameter initialization, our model takes
minor steps to converge and adapt to the newly collected data,
thus saving times.

D. Performance Comparison w.r.t. Training Scheme

We report how we deal with newly collected data in
Figure 5. In this experiment, for a fair comparison, ”re-
training by fine-tuning” (fine-tune) and ”retraining on new
data” (new only) are implemented based on neural-based CP-
Decomposition, in which we add a non-linearity transfor-
mation layer to enhance embeddings. Fine-tune is one of
the intuitive ways to reuse the previous embeddings while
incorporating historical information. However, fine-tuning has
the worst performance in all cases. Fine-tune can not memorize
the long-term origins and destinations preference and fails
to capture the evolution of network traffic data. Surprisingly,
new only performs even better than fine-tuning. It indicates
that directly transferring embeddings of the previous stage as
initialization for the next stage is not a proper choice and
may encounter the over-fitting issue. Our proposed LightNestle
consistently merits other update schemes, demonstrating that

our transfer module successfully transfers historical knowledge
in recovering the current tensor. We do not include sequentially
full retraining in these experiments as their training times were
much longer than expected. We can refer to Table I for full
retraining performance since they train on the entire tensor
directly.

TABLE III
RETRAINING TIME (S) AT EACH WINDOW ON TWO DATASET

Abilene Dataset
Methods/Density 2% 4% 6% 8% 10%
New Data Only 0.85 1.55 2.58 3.91 4.98

Fine Tune 0.37 0.59 0.77 0.98 1.21
LightNestle 1.27 1.57 1.93 2.43 3.10

GÉANT Dataset
Methods/Density 2% 4% 6% 8% 10%
New Data Only 1.15 2.37 4.03 5.22 6.55

Fine Tune 0.57 0.93 1.24 1.61 2.17
LightNestle 1.76 2.19 3.42 3.83 3.98

We also show the training time per stage on Table III. We
learn that despite retraining by fine-tuning (e.g., 10% sampling
rate, 1.21s on Abilene, 2.17s on GÉANT) has the fastest
training time while the recovery accuracy is not promising
(see Figure 5). Retraining new data has the slowest training
time (1.6x slower than LightNestle on both datasets when
the sampling ratio is 10%). Compared with LightNestle, it
demonstrates that our LightNestle successfully learns better
parameter initialization, and thus, is faster in adaption to a new
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Fig. 5. Comparison of different training schemes.
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Fig. 6. Ablation study on attention modules.

(a) Abilene (b) GEANT

Fig. 7. Analysis of hyper-parameters.

stage. Note that, under the low sampling ratio (e.g., 2%-4%),
LightNestle may be slower than training on new data due to
the extra overhead from transfer modules. When the sampling
rate is high (e.g., 6%-10%), the extra overhead brought by the
transfer modules is less than the benefit brought by them.
E. Ablation Study

To show the effectiveness of our attention-based trans-
fer module in reusing temporal embeddings, we compare
LightNestle with its variant LightNestle-m, which uses an
MLP-based transfer module instead of an attention-based
transfer module. Figure 6 reports the recovery performance of
our LightNestle (w/ attention) with its variant LightNestle-m
(w/o attention). We learn that the performance of LightNestle
consistently outperforms its variant without the attention trans-
fer module under different sampling ratios on two datasets.
We can draw the following conclusions: 1) The attention
module is highly effective when there is a low sampling ratio.
That may be because the difference between time slots is
more evident when data sparsity. When the sampling ratio is
relatively high, the difference may be narrowed due to the local
stability nature of monitoring data. 2) The attention transfer
module can be considered a time slot embedding refinement
trick. Other baselines except NTF do not explicitly consider
temporal evolution via neural networks; thus, we achieve better
performance.
F. Hyper-Parameter Study

Impact of Dimension. Feature dimension indicates how
many hidden factors are captured in the representation learning
process. It has a significant impact on both computation
resources requirement and model accuracy. We fix other hyper-
parameters, vary dimensions from 10 to 50, and draw the
recovery performance curve with a sampling ratio set to 10%
on all datasets. In Figure 7, the performance improves with the
increase of dimension. After the dimension reaches a certain
point (30 for Abilene and 20 for GÉANT), the dimension
increase degrades the recovery accuracy. The reason may be
over-fitting, which increases the model complexity and leads to
worse generalization ability. Therefore, we set the dimension
to 30 for Abilene and 20 for GÉANT.

Impact of Window Size. The window size indicates how
many time slots are included in a stage. It is one of the
essential hyper-parameters in our model. It determines the
memory consumption, affects the training time, and the model
accuracy. In Figure 7, with the increase in window size, the
recovery performance of LightNestle keeps degrading. That
may be due to fewer transfer module updates, resulting in
less task-invariant knowledge captured by meta-learning. In
addition, we notice that the transfer modules are parameter-
efficient. This may cause learning difficulty when distilling
complex patterns from a long tensor. However, the window
size should be neither too large nor too small. One should
keep a balance between model accuracy and update frequency.
Accordingly, we set the window size to 400 for Abilene and
200 for GÉANT.

VI. CONCLUSIONS

In this paper, we propose a novel Lightweight Neu-
ral Sequential Tensor Completion (LightNestle) method that
achieves accurate fast adaption to newly arrived tensors. To
achieve this, we first split the long tensor as a subtensors
sequence along the time axis. Then, we propose two novel
embedding transfer modules to reduce the training cost when
retaining rich patterns in historical data. Through extensive
experiments on two publicly available network traffic datasets,
we demonstrate that LightNestle outperforms both mathe-
matical low-rank models and state-of-the-art neural tensor
completion algorithms by a large margin and achieves fast
adaption ability on new data.
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